Phytopathology موقع علم أمراض النبات

Home

أمثلة تطبيقية تفصيلية لكتابة أجزاء الرسالة/الأطروحة الزراعية

 

أمثلة تطبيقية تفصيلية لكتابة أجزاء الرسالة/الأطروحة الزراعية

يهدف هذا الجزء إلى تقديم أمثلة تطبيقية واقعية ومفصلة لكيفية كتابة كل قسم من أقسام رسالة الماجستير أو أطروحة الدكتوراه في المجالات الزراعية. سنستعرض نماذج مُحسَّنة لكل جزء، مع التركيز على الوضوح والإيجاز والالتزام بمعايير الكتابة الأكاديمية.

ملاحظة: الأمثلة التالية مفترضة، ولكنها تستند إلى ممارسات بحثية شائعة في مجالات زراعية مختلفة. يجب عليك تكييف هذه الأمثلة لتناسب موضوع بحثك وأهدافك.

1. صفحة العنوان (Title Page):

مثال 1: رسالة ماجستير في علم التربة

The Impact of Biochar Amendment on Soil Properties and Maize Yield in a Tropical Sandy Soil

 

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of

Master of Science

in

Soil Science

 

by

Ahmed Mohamed Ali

 

Supervised by

Dr. Fatma Hassan Mahmoud

Professor of Soil Science

 

Department of Agronomy and Soil Science

Faculty of Agriculture

Cairo University

Giza, Egypt

 

May 2024

   

 

 

مثال 2: أطروحة دكتوراه في وقاية النبات

Molecular Characterization and Biological Control of Fusarium Wilt of Tomato Using Endophytic Bacteria

 

A Dissertation Submitted to the Graduate School

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in

Plant Pathology

 

by

Sarah Ibrahim El-Sayed

 

Supervised by

Dr. Omar Khalil Hassan

Professor of Plant Pathology

 

Department of Plant Protection

Faculty of Agriculture

Alexandria University

Alexandria, Egypt

 

October 2024

   

2. الإهداء (Dedication) اختياري

مثال:

      To my parents, for their unwavering love, support, and encouragement throughout my academic journey.

   

3. الشكر والتقدير (Acknowledgements):

مثال:

      I would like to express my sincere gratitude to my supervisor, Dr. Fatma Hassan Mahmoud, for her invaluable guidance, mentorship, and unwavering support throughout this research project. Her expertise and encouragement were instrumental in the successful completion of this thesis.

 

I am also grateful to the members of my thesis committee, Dr. Ahmed Kamal and Dr. Mona El-Sayed, for their insightful feedback and helpful suggestions.

 

This research was supported by a grant from the Egyptian Academy of Scientific Research and Technology (ASRT) [grant number]. I would like to thank ASRT for their generous funding.

 

Finally, I would like to thank my family and friends for their love and support during this challenging but rewarding experience.

    4. المستخلص (Abstract):

مثال: رسالة ماجستير في علم المحاصيل

      This study investigated the effects of different nitrogen (N) fertilization rates on the growth, yield, and grain quality of rice (Oryza sativa L.) in the Nile Delta region of Egypt. A field experiment was conducted during the 2022 and 2023 growing seasons, using a randomized complete block design with four replications. The treatments consisted of four N fertilization rates: 0, 75, 150, and 225 kg N ha-1. Results showed that increasing N fertilization rates significantly increased plant height, tiller number, and grain yield. However, the highest N rate (225 kg N ha-1) did not result in a further significant increase in grain yield compared to the 150 kg N ha-1 rate. Grain quality parameters, such as protein content and amylose content, were also significantly affected by N fertilization rates. The optimum N fertilization rate for maximizing rice yield and grain quality in the Nile Delta region was found to be 150 kg N ha-1. This rate can contribute to sustainable rice production by optimizing yield and minimizing environmental impacts.

 

Keywords: Rice, Nitrogen fertilization, Grain yield, Grain quality, Nile Delta, Egypt

   

5. قائمة المحتويات (Table of Contents):

      Table of Contents

 

Chapter 1: Introduction .......................................................................................................... 1

    1.1 Background .......................................................................................................... 1

    1.2 Problem Statement ................................................................................................. 3

    1.3 Objectives ............................................................................................................. 5

    1.4 Hypotheses ............................................................................................................ 6

 

Chapter 2: Literature Review ................................................................................................. 7

    2.1 Nitrogen Fertilization and Rice Production ........................................................... 7

    2.2 Grain Quality Parameters ..................................................................................... 15

    2.3 Nitrogen Use Efficiency ........................................................................................ 20

    2.4 Sustainable Rice Production ................................................................................ 25

 

Chapter 3: Materials and Methods ...................................................................................... 30

    3.1 Experimental Site ................................................................................................ 30

    3.2 Experimental Design and Treatments ................................................................. 31

    3.3 Data Collection .................................................................................................... 35

    3.4 Statistical Analysis .............................................................................................. 40

 

Chapter 4: Results ................................................................................................................ 42

    4.1 Plant Growth Parameters ..................................................................................... 42

    4.2 Grain Yield .......................................................................................................... 48

    4.3 Grain Quality Parameters ..................................................................................... 52

 

Chapter 5: Discussion ........................................................................................................... 58

    5.1 Effects of Nitrogen Fertilization on Plant Growth ................................................ 58

    5.2 Effects of Nitrogen Fertilization on Grain Yield ................................................. 62

    5.3 Effects of Nitrogen Fertilization on Grain Quality .............................................. 65

    5.4 Implications for Sustainable Rice Production ..................................................... 68

    5.5 Limitations of the Study .................................................................................... 70

 

Chapter 6: Conclusions ......................................................................................................... 72

    6.1 Summary of Findings .......................................................................................... 72

    6.2 Recommendations ............................................................................................... 74

    6.3 Future Research Directions ................................................................................. 75

 

References ............................................................................................................................. 77

Appendices ............................................................................................................................ 85

    6.قائمة الجداول والأشكال (List of Tables and Figures):

      List of Tables

 

Table 3.1: Physical and chemical properties of the experimental soil ................................. 32

Table 4.1: Effects of nitrogen fertilization rates on plant height ........................................... 43

Table 4.2: Effects of nitrogen fertilization rates on tiller number ........................................... 45

Table 4.3: Effects of nitrogen fertilization rates on grain yield ............................................ 49

Table 4.4: Effects of nitrogen fertilization rates on protein content ...................................... 53

Table 4.5: Effects of nitrogen fertilization rates on amylose content ................................... 55

 

List of Figures

 

Figure 3.1: Map of the experimental site ............................................................................... 31

Figure 4.1: Plant height at different growth stages ................................................................. 44

Figure 4.2: Tiller number at different growth stages ................................................................ 46

Figure 4.3: Relationship between nitrogen fertilization rate and grain yield .......................... 50

Figure 4.4: Relationship between nitrogen fertilization rate and protein content .................... 54

Figure 4.5: Relationship between nitrogen fertilization rate and amylose content ................. 56

   

7.المقدمة (Introduction):

مثال: أطروحة دكتوراه في علم أمراض النبات

      1. 1 Background

Fusarium wilt, caused by the soilborne fungus *Fusarium oxysporum* f. sp. *lycopersici* (Fol), is a devastating disease of tomato (*Solanum lycopersicum* L.) worldwide, causing significant yield losses in both greenhouse and field production systems (Jones et al., 2013). The fungus infects tomato plants through the roots, colonizes the vascular system, and eventually leads to wilting, yellowing, and plant death (Agrios, 2005).

 

Conventional methods for controlling Fusarium wilt, such as soil fumigation and the use of chemical fungicides, are often ineffective and can have negative environmental impacts (Gullino et al., 2000). The development of resistant tomato cultivars is an important strategy for managing Fusarium wilt, but the emergence of new races of the pathogen can overcome resistance genes (Foolad et al., 2008).

 

1. 2 Problem Statement

The increasing prevalence of Fusarium wilt and the limitations of conventional control methods necessitate the development of sustainable and environmentally friendly strategies for managing this disease. Biological control, using beneficial microorganisms, offers a promising alternative to chemical control (Whipps, 2001). Endophytic bacteria, which colonize plant tissues internally without causing disease symptoms, have shown potential for controlling various plant diseases, including Fusarium wilt (Compant et al., 2005).

 

1. 3 Objectives

The objectives of this study were to:

1. Isolate and identify endophytic bacteria from tomato plants.

2. Evaluate the *in vitro* and *in vivo* antifungal activity of selected endophytic bacteria against *Fusarium oxysporum* f. sp. *lycopersici*.

3.  Investigate the mechanisms of action of the most effective endophytic bacteria in suppressing Fusarium wilt.

4. 4 Hypotheses

This study tested the following hypotheses:

 

1. Endophytic bacteria can be isolated from tomato plants.

2. Some endophytic bacteria possess antifungal activity against *Fusarium oxysporum* f. sp. *lycopersici*.

3. Endophytic bacteria can suppress Fusarium wilt of tomato under greenhouse conditions.

4. The mechanisms of action of endophytic bacteria in suppressing Fusarium wilt involve the production of antifungal compounds and the induction of systemic resistance in tomato plants.

   

 

8.مراجعة الأدبيات (Literature Review):

مثال: أطروحة دكتوراه في الإنتاج الحيواني

      2. 1 The Role of Probiotics in Poultry Production

Probiotics are defined as live microorganisms that, when administered in adequate amounts, confer a health benefit on the host (FAO/WHO, 2001). The use of probiotics in poultry production has gained increasing attention in recent years as a means to improve gut health, enhance immunity, and improve overall performance (Patterson and Burkholder, 2003; Mountzouris et al., 2007). This interest stems partly from concerns about the use of antibiotic growth promoters (AGPs) in animal feed and the potential for the development of antibiotic-resistant bacteria (Dibner and Richards, 2005).

      2. 1.1 Mechanisms of Action of Probiotics

    The beneficial effects of probiotics in poultry are attributed to several mechanisms, including:

  • Competitive Exclusion: Probiotics compete with pathogenic bacteria for nutrients and attachment sites in the gastrointestinal tract, thereby reducing the colonization of pathogens (Nurmi and Rantala, 1973; Stavric and D'Aoust, 1993). This is often cited as the primary mechanism.
  • Production of Antimicrobial Substances: Some probiotic strains produce substances that inhibit the growth of pathogens, such as bacteriocins, organic acids (lactic acid, acetic acid), and hydrogen peroxide (Rolfe, 2000; Teo and Tan, 2005).
  • Stimulation of the Immune System: Probiotics can modulate the host's immune response by increasing the activity of immune cells, such as macrophages and natural killer cells, and by enhancing the production of antibodies (Isolauri et al., 2001; Schiffrin et al., 1995).
  • Improvement of Gut Morphology: Probiotics can improve the integrity of the intestinal lining by increasing villus height and crypt depth, which enhances nutrient absorption (Samanya and Yamauchi, 2002).
  • Enzyme Production: Certain probiotics can enhance digestive processes by producing enzymes like amylase, protease, and lipase, thereby improving the bird's ability to utilize feed (Apata, 2008).

1.  1.2 Commonly Used Probiotic Strains in Poultry

Several bacterial and yeast species are used as probiotics in poultry, including:

  • Lactobacillus species (L. acidophilus, L. casei, L. plantarum)
  • Bacillus species (B. subtilis, B. licheniformis)
  • Enterococcus species (E. faecium, E. faecalis)
  • Bifidobacterium species (B. bifidum, B. longum)
  • Saccharomyces cerevisiae (yeast)

1.  1.3 Effects of Probiotics on Poultry Performance

Numerous studies have reported positive effects of probiotics on various aspects of poultry performance, including:

  • Improved Growth Rate and Feed Conversion Ratio: Probiotics have been shown to improve weight gain and feed efficiency in broilers and laying hens (Kabir et al., 2004; Zhang et al., 2005).
  • Reduced Mortality: Probiotics can reduce mortality rates, particularly in young chicks, by protecting them against enteric pathogens (Jin et al., 1998).
  • Enhanced Egg Production and Quality: In laying hens, probiotics have been shown to increase egg production, egg weight, and shell thickness (Yousefi and Karkoodi, 2007; Panda et al., 2008).
  • Improved Carcass Quality: Probiotics can improve carcass yield and reduce abdominal fat deposition in broilers (Mahdavi et al., 2005).

1.  2 Probiotics and Gut Microbiome Modulation (هذا قسم فرعي إضافي)

يستمر استعراض الأدبيات بتفصيل أكبر، مع التركيز على الجوانب ذات الصلة المباشرة بموضوع الأطروحة، مثل تأثير البروبيوتيك على أنواع معينة من البكتيريا المعوية، أو تأثيرها على استقلاب عناصر غذائية محددة.


2.3 Effect of specific Probiotic X on nutrient digestibility
قسم متخصص جدا ومرتبط بفرضيات البحث

1.     المواد وطرائق البحث (Materials and Methods):

مثال: رسالة ماجستير في البساتين (إنتاج الفاكهة)

      3. 1 Experimental Site

 The field experiment was conducted at the Experimental Farm of the Faculty of Agriculture, [University Name], [City, Country], during the 2023 and 2024 growing seasons. The experimental site is located at [latitude]° N, [longitude]° E, and has an altitude of [elevation] m above sea level. The climate is characterized by [describe climate: e.g., hot, dry summers and mild, wet winters]. The average annual rainfall is [amount] mm, and the average temperature during the growing season is [temperature range]°C.

      3. 2 Soil Analysis

    Before planting, soil samples were collected from the experimental field at a depth of 0-30 cm. The samples were analyzed for their physical and chemical properties, including:

  • Soil texture (sand, silt, and clay content) using the hydrometer method (Gee and Bauder, 1986).
  • pH (1:2.5 soil-water suspension) using a pH meter.
  • Electrical conductivity (EC) (1:5 soil-water extract) using an EC meter.
  • Organic matter content using the Walkley-Black method (Nelson and Sommers, 1982).
  • Available nitrogen (N) using the Kjeldahl method (Bremner, 1996).
  • Available phosphorus (P) using the Olsen method (Olsen et al., 1954).
  • Available potassium (K) using the ammonium acetate method (Knudsen et al., 1982).

The results of the soil analysis are presented in Table 3.1.

      3. 3 Plant Material and Experimental Design

    The experiment was conducted using [Cultivar Name] mango (Mangifera indica L.) trees, which were [age] years old and grafted onto [Rootstock Name] rootstock. The trees were planted at a spacing of [spacing] m x [spacing] m.

A randomized complete block design (RCBD) with [number] replications was used. The experiment consisted of [number] treatments, which were:

1.     Control (no application of [treatment substance]).

2.     [Treatment 1: e.g., Foliar application of [substance] at [concentration] at [timing]].

3.     [Treatment 2: e.g., Soil application of [substance] at [rate] at [timing]].

4.     [Treatment 3: e.g., Combination of foliar and soil application...].
...(Continue listing all treatments)

Each experimental unit (plot) consisted of [number] trees.

      3. 4 Treatment Application

    [Describe in detail how each treatment was applied. Include specific dates, methods, equipment used, and any precautions taken.] For example:

The foliar spray treatments were applied using a hand-operated backpack sprayer. The spray solution was applied to the point of runoff, ensuring complete coverage of the foliage. The first application was made on [date], and subsequent applications were made at [interval] intervals. The soil application treatments were applied by evenly distributing the [substance] around the base of each tree within the drip line and then incorporating it into the top 5 cm of soil using a hand hoe.

      3. 5 Data Collection

    The following data were collected:

  • Vegetative Growth:
    • Shoot length (cm): Measured from the base to the tip of [number] randomly selected shoots per tree.
    • Number of new flushes per tree.
    • Leaf area (cm²) using a leaf area meter (Model: [Model Name]).
  • Flowering:
    • Number of panicles per tree.
    • Panicle length (cm).
    • Percentage of perfect flowers per panicle.
  • Fruit Set and Yield:
    • Initial fruit set (number of fruitlets per panicle) counted [number] weeks after full bloom.
    • Final fruit set (number of fruits per panicle) counted at harvest.
    • Fruit yield per tree (kg).
    • Number of fruits per tree.
    • Average fruit weight (g).
  • Fruit Quality:
    • Total soluble solids (TSS) (°Brix) using a hand-held refractometer.
    • Titratable acidity (TA) (%) determined by titration with 0.1 N NaOH.
    • Fruit firmness ( kg/cm ²) using a penetrometer.
    • Peel and pulp color using a colorimeter (Model: [Model Name]).

5.                6 Statistical Analysis

The data were analyzed using analysis of variance (ANOVA) using [Statistical Software Name, Version]. Means were compared using [Statistical Test: e.g., Duncan's Multiple Range Test, Tukey's HSD test] at a significance level of P ≤ 0.05.

1.     النتائج (Results):

مثال: رسالة ماجستير في علوم الأغذية (تكنولوجيا الألبان)

      4. 1 Effect of Different Starter Cultures on the Physicochemical Properties of Yogurt

    Table 4.1 shows the changes in pH, titratable acidity (TA), and syneresis of yogurt samples made with different starter cultures during fermentation. The pH of all yogurt samples decreased significantly (P ≤ 0.05) during fermentation, reaching values between 4.2 and 4.5 after 6 hours. Yogurt made with starter culture A ( Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus) showed the fastest rate of pH decline, followed by culture B (Culture A + Bifidobacterium lactis) and culture C (Culture A + Lactobacillus acidophilus).

The TA of all yogurt samples increased significantly (P ≤ 0.05) during fermentation, reflecting the production of lactic acid by the starter cultures. Yogurt made with culture A had the highest TA, followed by culture B and culture C.

Syneresis, which is the separation of whey from the yogurt gel, was significantly (P ≤ 0.05) lower in yogurt samples made with cultures B and C compared to culture A. This indicates that the addition of Bifidobacterium lactis or Lactobacillus acidophilus to the traditional yogurt starter culture improved the water-holding capacity of the yogurt gel.

Table 4.1: Physicochemical properties of yogurt samples during fermentation

Starter Culture

Time (h)

pH

Titratable Acidity (%)

Syneresis (%)

A

0

6.5 ± 0.1<sup>a</sup>

0.20 ± 0.01<sup>a</sup>

-

A

2

5.8 ± 0.1<sup>b</sup>

0.35 ± 0.02<sup>b</sup>

-

A

4

4.9 ± 0.1<sup>c</sup>

0.60 ± 0.03<sup>c</sup>

-

A

6

4.3 ± 0.0<sup>d</sup>

0.85 ± 0.04<sup>d</sup>

25 ± 2<sup>a</sup>

B

0

6.5 ± 0.1<sup>a</sup>

0.21 ± 0.01<sup>a</sup>

-

B

2

5.9 ± 0.1<sup>b</sup>

0.33 ± 0.02<sup>b</sup>

-

B

4

5.1 ± 0.1<sup>c</sup>

0.55 ± 0.03<sup>c</sup>

-

B

6

4.4 ± 0.0<sup>d</sup>

0.78 ± 0.04<sup>d</sup>

18 ± 1<sup>b</sup>

C

0

6.5 ± 0.1<sup>a</sup>

0.22 ± 0.01<sup>a</sup>

-

C

2

6.0 ± 0.1<sup>b</sup>

0.30 ± 0.02<sup>b</sup>

-

C

4

5.3 ± 0.1<sup>c</sup>

0.50 ± 0.03<sup>c</sup>

-

C

6

4.5 ± 0.0<sup>d</sup>

0.70 ± 0.04<sup>d</sup>

15 ± 1<sup>b</sup>

Means within a column with different superscript letters are significantly different (P ≤ 0.05).

      4. 2 Effect of Different Starter Cultures on the Viability of Probiotic Bacteria

    Figure 4.1 shows the viable counts of Bifidobacterium lactis and Lactobacillus acidophilus in yogurt samples made with cultures B and C, respectively, during refrigerated storage for 28 days. The viable counts of both probiotic bacteria remained above 10<sup>6</sup> CFU/g throughout the storage period, which is considered the minimum level for a product to be labeled as probiotic (Shah, 2000). However, the viable counts of both bacteria decreased significantly (P ≤ 0.05) during storage.

Figure 4.1: Viability of probiotic bacteria in yogurt during refrigerated storage

[Insert a graph showing the viable counts of B. lactis and L. acidophilus over time. The x-axis should represent storage time (days), and the y-axis should represent viable counts (log CFU/g). Use different lines or symbols to represent the different starter cultures.]

      4.  3 Sensory Evaluation (هذا قسم إضافي)

   

يتم عرض نتائج التحليل الحسي للزبادي، مثل الطعم، الرائحة، القوام، والمظهر العام، باستخدام جداول وأشكال بيانية مناسبة.

1.     المناقشة (Discussion):

مثال: أطروحة دكتوراه في الإنتاج الحيواني (تغذية الدواجن)

      5. 1 Effects of Dietary Enzyme Supplementation on Broiler Performance

    The results of this study demonstrated that dietary supplementation with the multi-enzyme complex significantly (P ≤ 0.05) improved body weight gain, feed intake, and feed conversion ratio (FCR) in broiler chickens during the starter, grower, and finisher phases. These findings are consistent with previous studies that have reported positive effects of enzyme supplementation on broiler performance (Cowieson et al., 2006; Adeola and Cowieson, 2011).

The improved performance observed in the enzyme-supplemented groups can be attributed to several factors. First, the enzymes in the multi-enzyme complex (xylanase, amylase, and protease) hydrolyze non-starch polysaccharides (NSPs), starch, and protein, respectively, in the feed, making these nutrients more available for digestion and absorption by the birds (Bedford and Classen, 1992; Choct, 2006). NSPs, such as arabinoxylans and β-glucans, are present in significant amounts in cereal grains, such as corn and wheat, which are commonly used in broiler diets. These NSPs can increase the viscosity of the digesta in the small intestine, reducing nutrient digestibility and increasing the risk of enteric diseases (Choct, 1997). By hydrolyzing NSPs, xylanase reduces digesta viscosity, improving nutrient absorption and reducing the proliferation of pathogenic bacteria in the gut.

Second, enzyme supplementation can improve the utilization of phytate-bound phosphorus. Phytate is the main storage form of phosphorus in plant-based feed ingredients, but it is poorly utilized by poultry due to the lack of endogenous phytase enzyme (Selle et al., 2000). The phytase enzyme in the multi-enzyme complex hydrolyzes phytate, releasing phosphorus and other minerals, such as calcium and zinc, making them available for absorption (Ravindran et al., 1995). This can reduce the need for inorganic phosphorus supplementation in the diet, which can be beneficial from both an economic and environmental perspective.

      5. 2 Effects of Dietary Enzyme Supplementation on Nutrient Digestibility

    The results of this study also showed that dietary enzyme supplementation significantly (P ≤ 0.05) improved the apparent ileal digestibility of dry matter, crude protein, and phosphorus. These findings are in agreement with previous studies that have reported improved nutrient digestibility with enzyme supplementation in broiler chickens (Zanella et al., 1999; Amerah et al., 2009).

The improved nutrient digestibility observed in the enzyme-supplemented groups is likely due to the direct effects of the enzymes on the feed components, as discussed above. By breaking down complex carbohydrates and proteins, the enzymes make these nutrients more accessible to the digestive enzymes produced by the bird, leading to increased digestion and absorption.

5.3 Interaction between enzyme and prebiotic supplementation. (قسم يربط بين نتائج مختلفة في الدراسة)

5.4 Implications for poultry industry. (قسم يتناول التطبيقات العملية للنتائج)

5.5 Limitation of the study (قسم يوضح القيود التي واجهت الدراسة)

1.     الاستنتاجات والتوصيات (Conclusions and Recommendations):

مثال: رسالة ماجستير في وقاية النبات (مكافحة الآفات)

      6. 1 Summary of Findings

    This study investigated the efficacy of three different insecticides (imidacloprid, abamectin, and spinosad) and a biological control agent (Bacillus thuringiensis, Bt) for the control of the tomato leafminer, Tuta absoluta, in a greenhouse tomato crop. The main findings of the study are:

  • All three insecticides significantly reduced T. absoluta larval populations and leaf damage compared to the untreated control.
  • Imidacloprid provided the highest level of control, followed by abamectin and spinosad.
  • Bt was less effective than the chemical insecticides in reducing T. absoluta populations, but it still provided a significant level of control compared to the untreated control.
  • No phytotoxicity was observed in any of the treatments.

1.  2 Conclusions

Based on the results of this study, it can be concluded that imidacloprid, abamectin, and spinosad are effective insecticides for the control of T. absoluta in greenhouse tomato crops. However, the choice of insecticide should be based on factors such as the level of infestation, the cost of the insecticide, and the potential for resistance development. Bt can be used as a biological control agent for T. absoluta, but it may be less effective than chemical insecticides in situations with high pest pressure.

      6. 3 Recommendations

    The following recommendations are made based on the findings of this study:

  • Regular monitoring of T. absoluta populations is essential for timely application of control measures.
  • Imidacloprid can be used for effective control of T. absoluta, but its use should be rotated with other insecticides to prevent resistance development.
  • Abamectin and spinosad can be used as alternatives to imidacloprid, particularly in situations where resistance to neonicotinoid insecticides, such as imidacloprid, is suspected.
  • Bt can be incorporated into an integrated pest management (IPM) program for T. absoluta as a sustainable and environmentally friendly control option.
  • Further research is needed to determine the long effect and economic impact.

6.4 Future Research

  • Further research is needed to investigate the potential for resistance development to the insecticides used in this study.
  • Studies should be conducted to evaluate the compatibility of Bt with other biological control agents and natural enemies of T. absoluta.
  • The economic feasibility of using different control strategies for T. absoluta should be assessed.
  • Research on the effect of different application timings is warrented.

1.     المراجع (References):

يجب أن تتبع قائمة المراجع نمطًا موحدًا ومتسقًا، مثل نمط APA أو MLA أو Chicago، وذلك وفقًا لمتطلبات الجامعة أو القسم. يجب أن تتضمن القائمة جميع المراجع المذكورة في النص، ويجب أن تكون كاملة ودقيقة.

مثال (نمط APA):

Agrios, G. N. (2005). Plant pathology (5th ed.). Elsevier Academic Press.

Adeola, O., & Cowieson, A. J. (2011). Board-invited review: Opportunities and challenges in using exogenous enzymes to improve nonruminant animal production. Journal of Animal Science, 89(10), 3189-3218.

Amerah, A. M., Romero, L. F., Awati, A., & Ravindran, V. (2009). Effect of exogenous xylanase and phytase, individually or in combination, on nutrient utilization and growth performance of broilers fed wheat-based diets. British Poultry Science, 50(1), 62-71.

Apata, D. F. (2008). Growth performance, nutrient digestibility and immune response of broiler chicks fed diets supplemented with a cocktail of Bacillus Xylanase and Protease. African Journal of Biotechnology, 7(12).

... (تستمر القائمة بجميع المراجع المستخدمة)

1.     الملاحق (Appendices):

تُستخدم الملاحق لإضافة أي مواد إضافية لا تتناسب مع النص الرئيسي للرسالة/الأطروحة، ولكنها ضرورية لفهم البحث بشكل كامل. قد تتضمن الملاحق ما يلي:

  • بيانات خام (Raw data).
  • جداول إحصائية إضافية.
  • صور فوتوغرافية.
  • خرائط تفصيلية.
  • برامج الحاسوب المستخدمة في التحليل.
  • استبيانات (إذا كانت الدراسة تعتمد على استبيانات).
  • موافقات أخلاقية (إذا كانت الدراسة تتضمن تجارب على الحيوانات أو البشر).

مثال:

Appendix A: Raw data for plant height measurements

Treatment

Replicate

Week 1 (cm)

Week 2 (cm)

Week 3 (cm)

...

Control

1

10.2

15.5

22.1

...

Control

2

11.0

16.2

23.0

...

Control

3

9.8

14.9

21.5

...

Treatment 1

1

12.5

18.7

26.3

...

...

...

...

...

...

...

 

Appendix B: ANOVA tables for yield data

تُضاف جداول تحليل التباين (ANOVA) لكل متغير من متغيرات المحصول التي تم تحليلها.

ملاحظات هامة:

  • الاتساق: حافظ على اتساق الأسلوب والتنسيق في جميع أجزاء الرسالة/الأطروحة.
  • الدقة اللغوية: تأكد من خلو النص من الأخطاء اللغوية والإملائية والنحوية. استخدم التدقيق الإملائي والنحوي، واطلب من زميل أو مشرف مراجعة النص.
  • الاقتباس الصحيح: استخدم نظام اقتباس موحد (مثل APA, MLA, Chicago) ووثق جميع المصادر بدقة. تجنب الانتحال (plagiarism) بأي شكل من الأشكال.
  • الوضوح والإيجاز: اكتب بوضوح وإيجاز، وتجنب الجمل الطويلة والمعقدة. استخدم لغة أكاديمية مناسبة.
  • الرسومات والجداول: تأكد من أن جميع الرسومات والجداول، واضحة، وسهلة القراءة، والفهم. استخدم عناوين وأوصافًا واضحة لكل رسم وجدول.
  • المراجعة: راجع الرسالة/الأطروحة بعناية عدة مرات قبل تقديمها. اطلب من مشرفك وزملائك مراجعة النص وتقديم الملاحظات.