المراجع الأخرى المذكورة في البحث:
[1] Armstrong, C.E., Gilmore, A.M., Boss, P.K., Pagay, V., Jeffery, D.W. (2023). Machine learning for classifying and predicting grape maturity indices using absorbance and fluorescence spectra. Food Chemistry 403, 134321.
[2] Badeka, E., Karapatzak, E., Karampatea, A., Bouloumpasi, E., Kalathas, I., Lytridis, C., Tziolas, E., Tsakalidou, V.N., Kaburlasos, V.G. (2023). A deep learning approach for precision viticulture, assessing grape maturity via yolov7. Sensors 23.
DOI: 10.3390/s23198126
[3] Bishop, C.M. (2007). Pattern Recognition and Machine Learning (Information Science and Statistics). 1 ed., Springer.
[4] Chandra, R., Collis, S. (2021). Digital agriculture for small-scale producers: Challenges and opportunities. Commun. ACM 64, 75–84.
DOI: 10.1145/3454008
[5] Coulibaly, S., Kamsu-Foguem, B., Kamissoko, D., Traore, D. (2022a). Deep learning for precision agriculture: A bibliometric analysis. Intelligent Systems with Applications 16, 200102.
[6] Coulibaly, S., Kamsu-Foguem, B., Kamissoko, D., Traore, D. (2022b). Deep learning for precision agriculture: A bibliometric analysis. Intelligent Systems with Applications 16, 200102.
DOI: 10.1016/j.iswa.2022.200102
[7] Domingues, T., Brandão, T., Ferreira, J.C. (2022). Machine learning for detection and prediction of crop diseases and pests: A comprehensive survey. Agriculture 12.
DOI: 10.3390/agriculture12091350
[8] Ferentinos, K.P. (2018). Deep learning models for plant disease detection and diagnosis. Computers and Electronics in Agriculture 145, 311-318.
[9] Few, S. (2014). Data visualization for human perception. Interaction Design Foundation. chapter 35.
[10] Fraga, H., Malheiro, A.C., Moutinho-Pereira, J., Santos, J.A. (2012). An overview of climate change impacts on european viticulture. Food and Energy Security 1, 94-110.
[11] Islam, M., Dinh, A., Wahid, K., Bhowmik, P. (2017). Detection of potato diseases using image segmentation and multiclass support vector machine. In: 2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE), pp. 1-4.
DOI: 10.1109/CCECE.2017.7946594
[12] Kamilaris, A., Prenafeta-Boldú, F.X. (2018). Deep learning in agriculture: A survey. Computers and Electronics in Agriculture 147, 70–90.
DOI: 10.1016/j.compag.2018.02.016
[13] Karpathy, A., Johnson, J., Fei-Fei, L. (2015). Visualizing and understanding recurrent networks. arXiv:1506.02078.
[14] van Klompenburg, T., Kassahun, A., Catal, C. (2020). Crop yield prediction using machine learning: A systematic literature review. Computers and Electronics in Agriculture 177, 105709.
DOI: 10.1016/j.compag.2020.105709
[15] Koirala, A., Walsh, K.B., Wang, Z., McCarthy, C. (2019). Deep learning for real-time fruit detection and orchard fruit load estimation: benchmarking of 'MangoYOLO'. Precision Agriculture 20, 1107-1135.
DOI: 10.1007/s11119-019-09642-0
[16] Krizhevsky, A., Sutskever, I., Hinton, G.E. (2017). Imagenet classification with deep convolutional neural networks. Commun. ACM 60, 84-90.
DOI: 10.1145/3065386
[17] Kummar, L., Salim, F., Al-Aani, Kahtan, H., Darr, M., Al-bashiri, H. (2019). Data visualisation for smart farming using mobile application 19, 1-7.
[18] LeCun, Y., Bengio, Y., Hinton, G. (2015). Deep learning. Nature 521, 436-44.
DOI: 10.1038/nature14539
[19] Madeira, R.N., Santos, P.A., Java, O., Priebe, T., Graça, E., Sárközi, E., Asprion, B., Gómez, R.P.B. (2022). Towards digital twins for multi-sensor land and plant monitoring. Procedia Computer Science 210, 45–52. The 13th International Conference on Emerging Ubiquitous Systems and Pervasive Networks (EUSPN) / The 12th International Conference on Current and Future Trends of Information and Communication Technologies in Healthcare (ICTH-2022) / Affiliated Workshops.
[20] Mohanty, S.P., Hughes, D.P., Salathé, M. (2016). Using Deep Learning for Image-Based Plant Disease Detection. Frontiers in Plant Science 7.
[21] Morellos, A., Pantazi, X.E., Paraskevas, C., Moshou, D. (2022). Comparison of deep neural networks in detecting field grapevine diseases using transfer learning. Remote Sensing 14.
DOI: 10.3390/rs14184648
[22] Ouhami, M., Hafiane, A., Es-Saady, Y., El Hajji, M., Canals, R. (2021). Computer vision, iot and data fusion for crop disease detection using machine learning: A survey and ongoing research. Remote Sensing 13.
DOI: 10.3390/rs13132486
[23] Proffitt, T. (2006). Precision Viticulture: A New Era in Vineyard Management and Wine Production. Winetitles, Ashford, S. Aust.
[24] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L. (2015). ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV) 115, 211-252.
DOI: 10.1007/s11263-015-0816-y
[25] Tao, F., Cheng, J., Qi, Q., Zhang, M., Zhang, H., Sui, F. (2018). Digital twin-driven product design, manufacturing and service with big data. The International Journal of Advanced Manufacturing Technology 94.
DOI: 10.1007/s00170-017-0233-1